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Abstract
The geometric phase and topological property for one-dimensional hybrid plasmonic-photonic
crystals consisting of a simple lattice of graphene sheets are investigated systematically. For
transverse magnetic waves, both plasmonic and photonic modes exist in the momentum space.
The accidental degeneracy point of these two kinds of modes is identified to be a diabolic point
accompanied with a topological phase transition. For a closed loop around this degeneracy point,
the Berry phase is π as a consequence of the discontinuous jump of the geometric Zak phase.
The wave impedance is calculated analytically for the semi-infinite system, and the
corresponding topological interface states either start from or terminate at the degeneracy point.
This type of localized interface state may find potential applications in manipulation of photon
emission of quantum dots, optical sensing and enhancement of nonlinear effects, etc.

Keywords: Zak phase, topological phase transition, graphene, interface states

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, the concept of ‘topology’ has attracted much research
interest in photonic systems [1]. For a two-dimensional (2D)
periodic system, the Brillouin zone forms a torus. The integral
of the Berry curvature over this closed torus is topologically
invariant and quantized as an integer, termed Chern number [2].
In photonic systems, by either breaking time-reversal symmetry
or introducing spin-orbital couplings, non-zero Chern numbers
can appear and a robust one-way transportation can be realized

[1, 3, 4]. For one-dimensional (1D) photonic systems, the
topological phase, characterized by the ‘Zak phase’ [5], has also
been investigated recently [6]. The relationship between Zak
phases and surface impedance, the ‘bulk-interface correspon-
dence’, was derived analytically in one-dimensional photonic
crystals (PCs). The measurements of the Zak phases for one-
dimensional PCs have also been carried out recently [7].

For PCs composed of both plasmonic and dielectric
materials, not only plasmonic modes but also photonic modes
exist [8, 9]. Plasmonic modes have the advantage of field
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confinements in the subwavelength scale, but unfortunately
with an unavoidable intrinsic loss. In contrast, for the pho-
tonic modes the loss is extremely small but the scale of the
field confinement is comparable to the wavelength. Strikingly,
the hybridization of these two kinds of modes can provide a
scheme to combine both advantages. Graphene, being only
one atomic thick, can support plasmonic modes [10]. Gra-
phene plasmons possess many remarkable features including
deep subwavelength, low loss, and high tunability, serving as
a promising platform for strong light–matter interaction in
terahertz and infrared frequencies [11–13].

In this paper, we study systematically the geometric phase
and topological property for a hybrid plasmonic-photonic sys-
tem. Firstly, we take a simple 1D lattice of graphene sheets as
an example. For transverse magnetic(TM) modes, there exists
an accidental degeneracy point stemming from the hybridiza-
tion of plasmonic and photonic modes. As the parallel wave-
vector component is equal to a critical value, the photonic band
gap is closed at a Diabolic point [14]. At this point the band
inversion of plasmonic and photonic modes takes place and a
topological phase transition occurs. Therefore, the quantized
Zak phases of the first and second photonic bands undergo a
discontinuous jump. Around this transition point, the Berry
phase is π, implying that this accidental degeneracy is non-
trivial [15]. Topological interface states are demonstrated for a
semi-infinite plasmonic-PC. The dispersion of these interface
states depends on the nature of the ambient medium (dielectric
or plasmonic), which can also be interpreted by the wave
impedance analytically, manifesting the ‘bulk-interface corre-
spondence’ in this system.

2. Band structures and geometric phases of a simple
lattice of graphene sheets

The system in this study is schematically shown in figure 1(a).
The graphene sheets are embedded periodically in a host
medium with a dielectric constant εh. The optical conductivity
of graphene can be given by the following relation within the
random phase approximation [16, 17]:
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where ε0 is the vacuum permittivity, c is the speed of light in
vacuum, α is the fine structure constant, θ(x) is the Heaviside
step function, and EFwW º is the dimensionless frequency
(here, ω is the angular frequency, ħ is the reduced Planck
constant, and EF is the Fermi energy).

There exist two independent polarizations: TM and
transverse electric (TE) ones with the magnetic and electric
field polarized along the y-axis, respectively. The dispersion
relation for these two modes can be solved by a transfer
matrix method [18, 19] given by:
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where q is the Bloch wavevector, d is the period,

k k kz xh 0
2 2e= - is the normal wavevector, kx is the parallel

component, and k0=ω/c is the wavevector in vacuum. The
corresponding photonic band structures for TM and TE
modes are shown in figures 1(b) and (d), respectively. The
photonic band structures for the TM and TE mode are quite
different. For the TM mode, the first photonic band is plas-
monic from graphene plasmons and the higher bands are
photonic. Interestingly, there exists a band-crossing point,
arising from the accidental degeneracy of plasmonic and
photonic modes [20]. This accidental degeneracy point,
denoted by (kc, Ωc), is the diabolic point of the band structure
[14]. While for the TE mode, there is no such band-crossing
point due to the absence of plasmonic modes.

In order to study the geometric phase of the photonic band
structures, the Bloch wave-function H z u z eq k q k

qz
, ,

i
x x

=( ) ( ) is
obtained by using the transfer matrix method [6, 18, 19], where
u zq k, x

( ) is a periodic function. In the unit cell, we choose the
origin at z=0 as an inversion center, at which the graphene
sheet locates. It is found that H zq k, x

( ) is an odd function of z for
the band edge states with q=π/d. We calculate H zq k, x

( ) from
the transfer matrix method for π/d � q �0, while we choose
that H z H zq k q k, ,x x

= - -- ( ) ( ) for −π/d � q <0. It is easy to
verify that this Bloch wave-function satisfies the periodic gauge
H z H zq k q d k, 2 ,x x

= p+( ) ( )/ automatically [6]. In figure 1(c), we
plot the band structure for q=0, which is two crossing lines
consisting of a band with k kx h 0e= (red line) and a less
dispersive band (blue line). The red band is just the light line,
while the blue band basically arises from the plasmonic modes.
On the blue line, H zq k0, x= ( ) is an odd function of z as exem-
plified by the state C, in which a discontinuous jump of the

Figure 1. (a) Schematic view of a simple lattice of graphene sheets
embedded in a host medium with dielectric constant εh. (b), (d)
Photonic band structures for the TM and TE modes, respectively. In
(b), the accidental degeneracy point is indicated by the red arrow. (c)
Dispersion for TM modes at q=0. In the inset, the distributions of
the magnetic field in a unit cell are shown for points A, B, C, and D
with the gray lines representing the graphene sheet. The parameters
used are εh=4, d=1.0 ħc/EF, and kN=EF/(ħc).
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magnetic field can be observed, manifesting the characteristics
of plasmons. While for the light line, H zq k0, x= ( ) is an even
function illustrated by the state B and D.

If the parallel component kx is fixed, the Zak phase can be
defined by [5, 6]:

z u u z qi d d , 3k q k q q k
Zak

BZ unit cell
, ,x x x
*ò òq e= ¶( ) ( )

where ε(z)=εh is the relative permittivity of the host medium.
For convenience, the integration over the unit cell is written in a
simple form u uq k q q k, ,x x

á ¶ ñ∣ ∣ with the bra-ket notation. It can be
proved directly that u uq k q q k, ,x x

á ¶ ñ∣ ∣ is an odd function of q. Two
examples of the integral path of the Zak phase are shown by the
red lines in figure 2(a). By using Pancharatnam’s discrete
approach [21], the Zak phase is given by:
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The first term vanishes since the integrand is odd in q, and
the only contribution for the Zak phase comes from the second
term in equation (4) [6]. Therefore, for the lower band with
kx>kc, the Zak phase is 0 since u uq k q q k, ,x x

á ¶ ñ∣ ∣ is continuous at
q=0. Whereas for kx<kc, there is a discontinuous jump at
q=0, and the corresponding Zak phase is π. The symmetry
properties of the Bloch wave-function at q=0 and the
corresponding Zak phase are shown in figures for different kx.
Analogous to that in 1D dielectric PCs [6], Zak phases can also
be determined by the symmetry properties of the band edge
states. As mentioned above, the wave-functions are always odd

functions of z for the band edge states at q=±π/d. For
kx=0.8 kc at the lower band, the Zak phase is π since the
symmetry of the Bloch state at the Γ point is even. The photonic
band gap closes at kx=kc which gives rise to a diabolical point.
For kx>kc, the gap reopens and the symmetries properties of
band edge states are inverted. A topological phase transition
takes place at kx=kc.

In 2D photonic systems, the Berry phase can be used to
identify the Dirac or Dirac-like spectrum [15]. In our system,
Berry phase is also well defined for 1D PCs if we incorporate
the parallel wavevector component kx:
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We choose an integral path around the degeneracy point
as shown by the arrows in figure 2(b). For simplicity, we
choose q to be a constant for paths 1 and 3, while kx to be a
constant for paths 2 and 4. It is easy to show that
u uq k k q k, ,x x x
á ¶ ñ∣ ∣ is an even function of q. If we do a one-to-one
mapping of q→−q with kx kept the same for path 1 and 3,
the integral over these two paths cancels each other. For paths
2 and 4, the integral in equation (5) can be calculated similar
to that in equation (4) for the Zak phase since kx is fixed along
each path. The integral over path 2 is zero, while it is π for
path 4 as there exists a discontinuous point for the lower band
at q=0. Thus, the Berry phase for this closed path around
the degeneracy point is precisely π.

3. Topological interface states

Topological interface states can exist in the simple lattice of
multi-layer graphene sheets due to the existence of the topolo-
gical phase transition. Considering an interface, truncated at the
middle of two adjacent graphene sheets as schematically shown
in figures 3(a) and (b). In the left side, the semi-infinite ambient
medium has a permittivity of εa (can be dielectric or plasmonic).
The plasmonic medium can be doped semiconductors in the
infrared and THz regimes [22], described by the Drude-type
permittivity 1 ,p

2 2e w w= - / where ωp is the plasma fre-
quency. Here we set E0.3p Fw = without loss of generality.
Note that the interface cutting is chosen at the inversion center
of the unit cell. The wave impedance Zs is defined by the ratio
of E|| to H|| at the interface. For the semi-infinite simple lattice
of graphene sheets, the wave impedance at the truncated inter-
face for the TM mode can be derived analytically by the transfer
matrix method [6, 18]:

Z
k

q kcot d 2 tan d 2 . 6s
z

z
0 hwe e

= ( ) ( ) ( )

As a result, Zs is a function of kx and q. The projected band
structures and Zs are shown in figure 3(c). The blue regions
represent the two projected pass bands, and the corresponding
wave impedance Zs are real. The region I, II and III stand for
forbidden band gaps, and the corresponding Zs are purely
imaginary.

It can be directly obtained from equation (6) that
Im(Zs)<0 for region I, whereas Im(Zs)>0 for region II and
III. The topological phase transition takes place at the

Figure 2. (a) Zak phases. The corresponding integral paths are shown
by red lines. For the plasmonic mode (lower band), the Zak phase
has a discontinuous jump from π to 0 as kx crosses the critical value
kc. (b) Berry phase. A closed integral path around the accidental
degeneracy point is shown by orange arrows. (c)–(e) show the band
structures with kx being 0.8kc, kc and 1.2kc, respectively. The
symmetry properties of the wave-function at the Γ point are also
highlighted. Band inversion occurs at kx=kc. The parameters εh and
d are the same as those in figure 1.
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degeneracy point (kc, Ωc) and also gives rise to a dis-
continuous jump of the sign of Im(Zs). It is well known the
wave impedance for the semi-infinite ambient medium is
Za=Im(kz)/ωεa for the states outside the light cone. There
should exist an interface state if the condition Im(Zs)+Im
(Za)=0 is satisfied [6]. The dispersion for interface states,
solved by this condition, is shown by the red and dark yellow
curves in figure 3(c) for dielectric (εa=1) and plasmonic
medium, respectively. The most striking property is that the
degeneracy point (kc, Ωc) acts as a starting or ending point for
the dispersion of interface states. For the dielectric ambient
medium, the dispersion starts from the near-zero frequency
and terminated at the degeneracy point (red curve), while for
the plasmonic ambient medium, it starts from the degeneracy
point (dark yellow curve), manifesting the non-trivial topo-
logical property distinct from the surface plasmon mode on
the surface of a Drude metal.

In figure 4, the dispersion for a finite structure with 12-
period graphene sheets instead of the semi-infinite structure is
shown. The geometry of this structure is sketched in the upper
right inset. Here the ambient medium is the free space. There
exist two truncated interfaces for this finite system. As
expected, there are two branches of dispersion for the inter-
face states lying between the light line kx=k0 (free space)
and k kx h 0e= (host medium). Here, the absorption of
graphene is taken into account with a finite relaxation time
τ=μEF/evF

2, where μ is the DC mobility and vF is the Fermi
velocity [11], e.g., EF=0.6 eV, τ=0.6 ps. The loci of these
reflection dips almost coincide with the calculated disper-
sions. To evaluate the symmetry properties of the two bran-
ches of interface states, the distribution of the magnetic field
Hy for two states marked by A and B are shown in (b) and (c),
respectively. In (b), it can be observed that state A is an even

mode, which corresponds to the fundamental waveguide
mode of the whole finite system. However, in (c), the topo-
logical interface state B is an odd mode and decays expo-
nentially away from the interfaces. For comparison, the bulk
band with q=0 for the infinite periodic array of graphene
sheets are plotted by the two black solid lines. It can be
observed that the dispersion corresponding to state A gets into
the upper pass band. However, state B locates in the band-gap
region I in figure 3(c), starts from the near-zero frequency,
and eventually enters the bulk band slightly below the
degeneracy point. As we increase the periods of graphene
sheets, the dispersion of this interface state converges to that
of the interface states for the semi-infinite case (red line in
figure 3(c)).

To construct the topological interface state, an ambient
medium is needed and the dielectric constant of ambient
medium εa should smaller than the host medium εh. Mean-
while, appropriate positions of truncation are also required,
for which the truncation is chosen to be at the center of the
dielectric layer to preserve the inversion symmetry. Note that
the degeneracy points originated from the hybrid of plas-
monic and photonic modes can also been found in other
hybrid plasmonic-photonic systems, e.g., multilayer metal/
dielectric systems [23] and a metallic surface coated with
dielectric nanostructures [24].

The graphene/dielectric multilayer structures can be
realized experimentally by CVD method [25]. Due to the
strong near-field enhancement at the vicinity of the interface,
the topological interface state may find applications in control

Figure 3. Dispersion of topological interface states for different
ambient media. The semi-infinite structures are sketched in (a) and
(b) for the plasmonic and dielectric medium, respectively. (c) The
dispersion of topological interface states, calculated by Im(Zs)+Im
(Za)=0 analytically. The dark yellow and red lines correspond
respectively to the plasmonic and dielectric ambient medium, as
indicated by the arrows. The projected band structure for the periodic
array of graphene sheets is also shown by the blue region. Region I,
II and III are the forbidden band gaps with purely imaginary wave
impedance Zs. The dashed line stands for the light cone of the
dielectric medium εa. Here, the parameters εh and d are the same as
those in figure 1.

Figure 4. Dispersion for the 12-period graphene sheets. The
geometry of the structure is sketched in the upper right inset. The
ambient dielectric medium is the free space. The gray lines in (a) are
the dispersion for all the modes of this system. To excite the
interface state, a prism with a permittivity ε=εh is introduced in the
left side. The incident electromagnetic wave is TM polarized. The
reflectance as a function of Ω and kx of this finite structure is shown
in the color-scale form. The loci of the reflection dip agree well with
the calculated dispersions. The distribution of the magnetic field Hy

for two states marked by A and B are shown in (b) and (c),
respectively. The two black solid lines represent the bulk band with
q=0 for the infinite periodic array of graphene sheets. The
parameters εh and d are the same as those in figure 1.
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of photon emission of quantum dots [26], optical sensing
[27], and nonlinear enhancement [28] etc.

4. Conclusions

In summary, topological properties for the multi-layer gra-
phene system have been investigated systematically. There
exists a topological phase transition for the TM mode around
the accidental degeneracy point, stemming from the hybridi-
zation of plasmonic and photonic modes. Band inversion
occurs as the wave vector kx passes through the critical value
kc. The Berry phase around this transition point is π, mani-
festing the non-trivial topological characteristics. Meanwhile,
the wave impedance inside the band-gap zones are derived
analytically, and a branch of topological interface modes exist
as the interface cutting is introduced. The topological phase
transition and interface states arise from hybridization of
plasmonic and photonic modes can be found in other fre-
quency regime as long as the surface modes exist, which may
open up new avenues in both physics and applications for the
emerging concept of topological photonics.
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